skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Almaslukh, Abdulaziz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Social media platforms generate massive amounts of data that reveal valuable insights about users and communities at large. Existing techniques have not fully exploited such data to help practitioners perform a deep analysis of large online communities. Lack of scalability hinders analyzing communities of large sizes and requires tremendous system resources and unacceptable runtime. This article proposes a new analytical query that identifies the top-kposts that a given user community has interacted with during a specific time interval and within a spatial range. We propose a novel indexing framework that captures the interactions of users and communities to provide a low query latency. Moreover, we propose exact and approximate algorithms to process the query efficiently and utilize the index content to prune the search space. The extensive experimental evaluation on real data has shown the superiority of our techniques and their scalability to support large online communities. 
    more » « less
  2. The unprecedented rise of social media platforms, combined with location-aware technologies, has led to continuously producing a significant amount of geo-social data that flows as a user-generated data stream. This data has been exploited in several important use cases in various application domains. This article supports geo-social personalized queries in streaming data environments. We define temporal geo-social queries that provide users with real-time personalized answers based on their social graph. The new queries allow incorporating keyword search to get personalized results that are relevant to certain topics. To efficiently support these queries, we propose an indexing framework that provides lightweight and effective real-time indexing to digest geo-social data in real time. The framework distinguishes highly dynamic data from relatively stable data and uses appropriate data structures and a storage tier for each. Based on this framework, we propose a novel geo-social index and adopt two baseline indexes to support the addressed queries. The query processor then employs different types of pruning to efficiently access the index content and provide a real-time query response. The extensive experimental evaluation based on real datasets has shown the superiority of our proposed techniques to index real-time data and provide low-latency queries compared to existing competitors. 
    more » « less